Python network data visualization
Data Harvest
The Scapy packet manipulation program lets you analyze and manipulate packets to create incident response reports or examine network security.
Most folks have pulled up Wireshark a time or two to troubleshoot an application or system problem. During forensics, packet captures (PCAPs) are essential. Often you are looking at things like top talkers, ports, bytes, DNS lookups, and so on. Why not automate this process with Python?
Scapy [1] is a great tool suite for packet analysis and manipulation. It is most often talked about in the realm of packet manipulation, but its ability to analyze packets is also top-notch.
Make Ready
First, you need to make sure you have Python 3 installed along with the following packages:
sudo pip3 install scapy scapy_http plotly PrettyTable
To get started, you will want a PCAP to analyze. To capture 1,000 packets and save them to the file example.pcap
, enter:
~$ sudo tcpdump -c 1000 -w example.pcap tcpdump: listening on enp0s3, link-type EN10MB (Ethernet), capture size 262144 bytes 1000 packets captured 1010 packets received by filter 0 packets dropped by kernel ~$
Scapy can handle all parts of the OSI model except Layer 1 (Figure 1). Listing 1 shows the Hello World! of packet reading. To begin, you need to read a raw packet (line 5), see if it has the layer your want (line 9), and then act on it. Because you are using Python, if you try to print out pkt[IP].src
when no IP is present, Python will throw an error, so you need to wrap it in a try
/except
(lines 10-13).
Listing 1
Looking for Layers
01 #Step 1: Import scapy 02 from scapy.* import all 03 04 #Step 2: Read the PCAP usimg rdpcap 05 packets = rdpcap("example.pcap") 06 07 #Step 3: Loop and print an IP in a packet in Scapy by looking at Layer 3 08 for pkt in packets: 09 if IP in pkt: 10 try: 11 print(pkt[IP].src) // Source IP 12 except: 13 pass
Sorting
If you ran the code in Listing 1 with your example.pcap
file of 1,000 packets, your terminal printed ~1,000 lines, which is obviously not very useful. To improve, you can read all the IPs, append them to a list, then run a counter, and print the results using the PrettyTable
module (Listing 2). As before, you import Scapy, but now you will also import the collection module and PrettyTable (Step 1). Next, add an empty list, and append (Step 2). Now you can use the counter to loop through the list of IPs and create a count (Step 3); finally, using the PrettyTable
module, you print out the results in a clean table (Step 4).
Listing 2
Adding a Counter
01 #Step 1: Imports 02 from scapy.all import * 03 from prettytable import PrettyTable 04 from collections import Counter 05 06 #Step 2: Read and Append 07 srcIP=[] 08 for pkt in packets: 09 if IP in pkt: 10 try: 11 srcIP.append(pkt[IP].src) 12 except: 13 pass 14 15 #Step 3: Count 16 cnt=Counter() 17 for ip in srcIP: 18 cnt[ip] += 1 19 20 #Step 4: Table and Print 21 table= PrettyTable(["IP", "Count"]) 22 for ip, count in cnt.most_common(): 23 table.add_row([ip, count]) 24 print(table) 25 26 +-----------------+-------+ 27 | IP | Count | 28 +-----------------+-------+ 29 | 10.0.2.15 | 482 | 30 | 52.84.82.203 | 93 | 31 | 8.8.8.8 | 82 | 32 | 104.16.41.2 | 76 | 33 | 216.58.216.232 | 30 | 34 | 104.20.150.16 | 20 | 35 | 52.84.133.105 | 16 | 36 | 209.132.181.15 | 16 | 37 | 140.211.169.196 | 15 | 38 | 72.21.91.29 | 12 | 39 | 104.244.46.103 | 12 | 40 +-----------------+-------+
Visualize
Now that you know how to read packets and do some counting, you can use the Plotly package to make graphs by building on the last example (Listing 3). First, you have to add the plotly
import to Step 1 (line 1); then, after going through Steps 2 and 3 as before, you replace Step 4 in the previous example of Listing 2 with new code that creates two new lists to hold x and y data (Listing 3, lines 4-5) and loops through the IPs again, adding them to the lists (lines 7-9).
Listing 3
Making Graphs
01 import plotly 02 03 #Step 4: Add Lists 04 xData=[] 05 yData=[] 06 07 for ip, count in cnt.most_common(): 08 xData.append(ip) 09 yData.append(count) 10 11 #Step 5: Plot 12 plotly.offline.plot({ 13 "data":[plotly.graph_objs.Bar(x=xData, y=yData)] })
By default, Plotly uses its web UI to create charts, but if, like me, you use this data in a incident response situation, you do not want to share that data with a cloud system. Therefore, I use the offline version to plot my data in a new Step 5. When run, it will open your default web browser (Figure 2).
Buy this article as PDF
(incl. VAT)
Buy Linux Magazine
Subscribe to our Linux Newsletters
Find Linux and Open Source Jobs
Subscribe to our ADMIN Newsletters
Support Our Work
Linux Magazine content is made possible with support from readers like you. Please consider contributing when you’ve found an article to be beneficial.
News
-
Fedora 41 Released with New Features
If you're a Fedora fan or just looking for a Linux distribution to help you migrate from Windows, Fedora 41 might be just the ticket.
-
AlmaLinux OS Kitten 10 Gives Power Users a Sneak Preview
If you're looking to kick the tires of AlmaLinux's upstream version, the developers have a purrfect solution.
-
Gnome 47.1 Released with a Few Fixes
The latest release of the Gnome desktop is all about fixing a few nagging issues and not about bringing new features into the mix.
-
System76 Unveils an Ampere-Powered Thelio Desktop
If you're looking for a new desktop system for developing autonomous driving and software-defined vehicle solutions. System76 has you covered.
-
VirtualBox 7.1.4 Includes Initial Support for Linux kernel 6.12
The latest version of VirtualBox has arrived and it not only adds initial support for kernel 6.12 but another feature that will make using the virtual machine tool much easier.
-
New Slimbook EVO with Raw AMD Ryzen Power
If you're looking for serious power in a 14" ultrabook that is powered by Linux, Slimbook has just the thing for you.
-
The Gnome Foundation Struggling to Stay Afloat
The foundation behind the Gnome desktop environment is having to go through some serious belt-tightening due to continued financial problems.
-
Thousands of Linux Servers Infected with Stealth Malware Since 2021
Perfctl is capable of remaining undetected, which makes it dangerous and hard to mitigate.
-
Halcyon Creates Anti-Ransomware Protection for Linux
As more Linux systems are targeted by ransomware, Halcyon is stepping up its protection.
-
Valve and Arch Linux Announce Collaboration
Valve and Arch have come together for two projects that will have a serious impact on the Linux distribution.